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The Yang–Baxter equation

The Yang–Baxter equation (YBE) is a kind of braiding equation
for a linear map R on V⊗V.

Define two linear maps on V⊗V⊗V, namely R12, acting on
the first two components of a 3-tensor and fixing the third, and
R23, acting on the second and third component and fixing the
first.
The Yang–Baxter equation is

R12R23R12 = R23R12R23.
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Combinatorial Yang–Baxter

The combinatorial (or set-theoretic) YBE is defined for a map r
on X×X, where X is a set.

It asserts, that, as maps from X×X×X to itself,

r12r23r12 = r23r12r23,

where r12 acts as r on the first two coordinates fixing the third,
and r23 is similarly defined.
Of course, a solution of this equation gives a solution of the
“linear” equation over any field F, on setting V = FX, the
F-vector space with basis X.
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Why?

There is a considerable body of work on the combinatorial
Yang–Baxter equation; I am not as familiar with it as I should
be.

So for me the purpose of this work is: Describing solutions of
the combinatorial Yang–Baxter equation is an interesting
exercise; it may be useful to get some idea of just how wild they
are, and what constraints (if any) they satisfy.
But there is more.
This is by no means a complete survey; I am talking about joint
work with Tatiana Gateva-Ivanova, and in particular on my
contributions to this work.
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What does the CYB equation mean?

We can describe the function r in a different way. If
r(x, y) = (u, v), we set u = fx(y) and v = gy(x); for each x, the
function fx is a map from X to itself, and similarly for gy.

To introduce the next result, here is a familiar analogy.
Contrary to my usual habit, I will write maps on the left, and
compose from right to left.
Let ◦ be a binary operation on X, and define lx to be the
operation of left translation by x: that is, lx(y) = x ◦ y. Then the
operation ◦ is associative if and only if

x ◦ y = z⇒ lxly = lz

for all x, y, z ∈ X.
The CYB equation has a similar interpretation: it is a kind of
“two-dimensional associative law”.
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Proposition

Let r satisfy the CYB equation on X. If r(x, y) = (u, v), then
fxfy = fufv.

Proof.
For any z ∈ X,

(x, y, z)
r23→(x, fy(z), ?)

r12→(fx(fy(z)), ?, ?)
r23→(fx(fy(z)), ?, ?),

and

(x, y, z)
r12→(u, v, z)

r23→(u, fv(z), ?)
r12→(fu(fv(z)), ?, ?).

Thus solutions to CYB are “2-dimensional semigroups”, and of
course we want to understand them.
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Further conditions

I impose three further conditions on the function r, namely
I r is an involution;

I r fixes pointwise the diagonal of X×X;
I r is non-degenerate (see below).

Non-degeneracy is the requirement that each of the functions fx
and gy defined earlier is a bijection on X.
I will use the short term solution for a function r that satisfies
the combinatorial Yang–Baxter equation and our extra three
conditions. Continuing the earlier analogy, solutions are
“2-dimensional groups”.
What I say is true for finite sets. Some of the results extend to
infinite sets.
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Remarks

Sometimes we write fx(y) = xy and gy(x) = xy. We think of X
acting on Y (on the left) and Y acting on X (on the right).
Non-degeneracy means that these actions are by permutation,
so we are in the world of permutation groups.

If the non-degeneracy is relaxed, we would be in the world of
transformation semigroups instead, which is much less well
understood.
Relaxations of the first two conditions have been studied, and
some results are known about this.
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Two examples

I The function r(x, y) = (y, x) satisfies the Yang–Baxter
equation (essentially by the usual proof that the
transpositions (1, 2) and (2, 3) in the symmetric group S3
satisfy the braid relation), and also our three additional
conditions. In this case, the functions fx and gy are the
identity, for all choices of x and y. This is referred to as the
trivial solution.

I The function which swaps (1, 2) with (3, 1), (1, 3) with
(2, 1), and (2, 3) with (3, 2) (and fixes all diagonal pairs) is
a solution on X = {1, 2, 3}.
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Translation to permutation groups

The functions f and g can be regarded as maps from X into the
symmetric group on X. It can be shown that a pair of maps
f , g : X→ Sym(X) arise in this way from a solution if and only
if they satisfy the following conditions:

I fx(x) = x;
I ffx(y)gy(x) = x;
I ffx(y)fgy(x) = fxfy.

The second equation shows that g is determined by f , so
everything can be expressed in terms of f .
It also shows that the group generated by the maps gy is
contained in the group generated by the maps fx; by symmetry
these groups are equal.
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A problem

In our second example earlier, f1 and g1 are equal to the
transposition (2, 3), while the other functions are the identity. If
the solution is trivial then all maps are the identity.

Problem
Is it true that, if f and g satisfy the above conditions and |X| > 1, is it
true that there exist two points x and y with fx = fy?
I will say more about this later.
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Other algebraic structures

The group G(r) generated by the permutations fx for x ∈ X is
the Yang–Baxter permutation group associated with the
solution r.

There is another way of producing a group from a solution of
the YBE. For any solution r on X, let

G(r) = 〈X | xy = uv whenever r(x, y) = (u, v)〉

This is the Yang–Baxter group associated with the solution r.
If r is the trivial solution, then G(r) is a free abelian group of
rank |X|.
One can also consider the semigroup, or the F-algebra (for a
field F) generated by X with the same relations.
The algebras are interesting in other contexts: they are
quadratic algebras, that is, their relations are homogeneous
quadratic expressions in the generators.



Other algebraic structures

The group G(r) generated by the permutations fx for x ∈ X is
the Yang–Baxter permutation group associated with the
solution r.
There is another way of producing a group from a solution of
the YBE. For any solution r on X, let

G(r) = 〈X | xy = uv whenever r(x, y) = (u, v)〉

This is the Yang–Baxter group associated with the solution r.

If r is the trivial solution, then G(r) is a free abelian group of
rank |X|.
One can also consider the semigroup, or the F-algebra (for a
field F) generated by X with the same relations.
The algebras are interesting in other contexts: they are
quadratic algebras, that is, their relations are homogeneous
quadratic expressions in the generators.



Other algebraic structures

The group G(r) generated by the permutations fx for x ∈ X is
the Yang–Baxter permutation group associated with the
solution r.
There is another way of producing a group from a solution of
the YBE. For any solution r on X, let

G(r) = 〈X | xy = uv whenever r(x, y) = (u, v)〉

This is the Yang–Baxter group associated with the solution r.
If r is the trivial solution, then G(r) is a free abelian group of
rank |X|.

One can also consider the semigroup, or the F-algebra (for a
field F) generated by X with the same relations.
The algebras are interesting in other contexts: they are
quadratic algebras, that is, their relations are homogeneous
quadratic expressions in the generators.



Other algebraic structures

The group G(r) generated by the permutations fx for x ∈ X is
the Yang–Baxter permutation group associated with the
solution r.
There is another way of producing a group from a solution of
the YBE. For any solution r on X, let

G(r) = 〈X | xy = uv whenever r(x, y) = (u, v)〉

This is the Yang–Baxter group associated with the solution r.
If r is the trivial solution, then G(r) is a free abelian group of
rank |X|.
One can also consider the semigroup, or the F-algebra (for a
field F) generated by X with the same relations.

The algebras are interesting in other contexts: they are
quadratic algebras, that is, their relations are homogeneous
quadratic expressions in the generators.



Other algebraic structures

The group G(r) generated by the permutations fx for x ∈ X is
the Yang–Baxter permutation group associated with the
solution r.
There is another way of producing a group from a solution of
the YBE. For any solution r on X, let

G(r) = 〈X | xy = uv whenever r(x, y) = (u, v)〉

This is the Yang–Baxter group associated with the solution r.
If r is the trivial solution, then G(r) is a free abelian group of
rank |X|.
One can also consider the semigroup, or the F-algebra (for a
field F) generated by X with the same relations.
The algebras are interesting in other contexts: they are
quadratic algebras, that is, their relations are homogeneous
quadratic expressions in the generators.



Relations

According to Proposition 1, the map x 7→ fx extends to a
surjective homomorphism from G(r) to G(r).

Several things are known:
I G(r) cannot be transitive if |X| > 1 (Rump 1989).
I G(r) (and hence G(r)) is a soluble group (Etingov, Schedler

and Soloviev 1999).
One of our results is:

Theorem
The derived length of G(r) is one greater than the derived length of
G(r).
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Retracts and multipermutation level

Define an equivalence relation called congruence on X by the
rule that x ≡ y if fx = fy.

An affirmative answer to Problem 1 would imply that this
equivalence relation is not the relation of equality whenever
|X| > 1.
It is easy to see that the given solution induces a solution
(called a retract) on the set of equivalence classes.
We can repeatedly take retracts; if the corresponding
congruences are always non-trivial, eventually we get a
solution on a 1-element set. Such a solution is called a
multipermutation solution; its level is the number of retractions
required to reach the 1-element set.
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A multipermutation solution of level 0 is just the trivial
solution on a 1-element set. A multipermutation solution of
level 1 is the trivial solution on a set of size greater than 1; so
the associated permutation group G(r) is the trivial group, and
the group G(r) is (free) abelian.

For a multipermutation solution, the YB group is soluble with
derived length bounded by the multipermutation length; so the
derived length of the YB permutation group is bounded by one
less than the multipermutation length.
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Level and cardinality

We have constructions of solutions with finite
multipermutation level, which indicate that the cardinality of X
grows exponentially with the multipermutation level; our
smallest example of level m has cardinality 2m + 1.

We also have a structure theorem for finite solutions with
abelian YB permutation group. They are necessarily
multipermutation, with level at most the number of orbits of
G(r). They can be constructed from the solutions
corresponding to the orbits by a construction known as strong
twisted union. Every finite abelian group is isomorphic to the
YB permutation group of such a solution.
There is surely much more to say about this situation!
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Sketch proof of Theorem 2

Let G and G∗ be the YB group and permutation group
associated with a solution r. We have to show that
dl(G) = dl(G∗) + 1.

First note that we have a homomorphism from G to G∗,
mapping x to fx. From the definition of the group G we find
that the kernel of the homomorphism is abelian, so
dl(G) ≤ dl(G∗) + 1. Indeed, the kernel is free abelian.

Lemma
Let A be free abelian of finite rank, and H a finite group acting
faithfully on A. Then [H, A] = 〈ha− a : a ∈ A, h ∈ H〉 is non-zero,
and H acts faithfully on [H, A].
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Now we prove the theorem. It is known that there is a natural
number p such that the subgroup of G generated by the pth
powers of the generators is a free abelian group A, and admits
a faithful action by G∗. Define An inductively by A0 = A and
An+1 = [G(n), An]. Using our lemma, if G(n) 6= 1, then An+1 6= 1;
so Al 6= 1, where l = dl(G∗). Since Al ≤ G(l), we see that
dl(G) > dl(G∗), and so by the inequality at the start of this
section, we have dl(G) = dl(G∗) + 1.



Wreath products

We can construct solutions with arbitrarily large
multipermutation level and derived length by the wreath
product construction.

Let (X0, r0) and (Y, rY) be solutions. Let X be the disjoint union
of |Y| copies of X0, say

⋃
α∈Y Xα, and define a function r on

X×X as follows:

r(x, x′) = rα(x, x′) if x, x′ ∈ Xα for some α,
r(x, x′) = (x′, x) otherwise.
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Define a map σ : Y→ Sym(X) by the rule that σ(y) acts on the
copies of X0 in the same way that fy acts on Y. Then we can
construct a solution on Z = X ∪ Y: we use the given solution on
Y, and the solution just constructed on X, and set
r(y, x) = (σ(y)x, y) and r(x, y) = (y, σ(y)−1x) for x ∈ X, y ∈ Y.

Proposition

The above construction gives a solution. Its permutation group G∗Z is
the wreath product of G∗X0

and G∗Y, acting in the usual (imprimitive)
way on X and as the top group G∗Y on Y.
Its multipermutation level is given by
mpl(Z) = mpl(X0) + mpl(Y)− 1.
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It is clear that iterating the wreath product on a small solution
(such as our three-element solution) will produce solutions
whose size grows exponentially with the multipermutation
level (or derived length).

The bounds it gives are not best possible; it is possible to bring
them down with extra care.
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Some problems

I Is it true that the congruence relation defined by any
solution on a set of size greater than 1 is not the relation of
equality? (This would imply that every finite solution is
multi-permutation.)

I Is it true that every finite soluble group G is a YB
permutation group? If so, what is the smallest cardinality
of a corresponding solution?

I Is it possible to use the theory of transformation
semigroups to extend some of these results to the
degenerate case?
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