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Alternating Sign Matrices

Alternating Sign Matrices were introduced by Robbins and Rumsey in
’83, in their modified version of the Dodgson’s condensation algorithm
for the evaluation of determinants.
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The result was (surprisingly) a Laurent polynomial in entries mij :

Theorem [Robbins, Rumsey])
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ASMn = n × n Alternating Sign Matrices
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Alternating Sign Matrices are square n × n matrices with entries 0, 1,−1,
such that

- signs +1 and −1 alternate on each row and each column;

- each row and each column sums to 1.
0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0


The number of n × n ASM has a nice factorized formula

Theorem: ASM enumerations [Zeilberger ’96])

A(n) =
∏

j=0..n−1

(3j + 1)!

(n + j)!

Simpler proof by Kuperberg: use equivalence with 6-vertex (see later)
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ASM and Plane Partitions or lozange tilings

Alternating Sign Matrices are in deep (and somehow mysterious)
relations with other remarkable combinatorial objects:

Luigi Cantini Determinants of doubly-refined ASM



ASM and Plane Partitions or lozange tilings

Alternating Sign Matrices are in deep (and somehow mysterious)
relations with other remarkable combinatorial objects:

Descending Plane Partitions
They can be seen as lozange covering of an hexagonal region with a
central triangular hole and symmetric under a 2π

3 rotations.
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ASM and Plane Partitions or lozange tilings

Alternating Sign Matrices are in deep (and somehow mysterious)
relations with other remarkable combinatorial objects:

Totally Symmetric Self-Complementary Plane Partitions
They are lozange tilings of a regular hexagon, invariants under the whole
the dihedral group of symmetries of the hexagon.
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ASM and plane partitions

Combining results from Andrews and Zeilberger it turns out that

Theorem

A(n) = DPP(n) = TSSCPP(2n)

I These equalities extend to certain weighted and refined
enumerations (see later).

I There is no known bijection between these classes of objects. Only
partial results: see recent work of Biane and Cheballah for
ASM↔TSSCP and Ayyer for ASM↔DPP.
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Weighted enumerations

Beside the simple enumeration it is interesting to introduce certain
weights:

I N(B): number of −1 present in the matrix B

I Inversion number

I (B) :=
∑

1≤i<i ′≤n
1≤j′≤j≤n

Bi,jBi ′,j′ ,

which generalizes the inversion number of the permutations

Consider the weighted enumeration

A(n|τ, ν) :=
∑

B∈ASMn

τN(B)ν I (B).
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Row-column refined enumerations

From the definining properties of an ASM it follows that on the
top/bottom rows and left/rightmost columns there is a single 1


0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0


We can consider ASM enumerations refined by the position of some of
these 1s. The simplest one is

Theorem: Single refined ASM enumerations [Zeilberger ’96]

Aj(n) =
(n + j − 2)!(2n − j − 1)!

(j − 1)!(n − j)!(2n − 2)!
A(n − 1)

where j , is the position of the 1 in the leftmost column.

Luigi Cantini Determinants of doubly-refined ASM



Row-column refined enumerations

From the definining properties of an ASM it follows that on the
top/bottom rows and left/rightmost columns there is a single 1

1

6

n

j


0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0


We can consider ASM enumerations refined by the position of some of
these 1s. The simplest one is

Theorem: Single refined ASM enumerations [Zeilberger ’96]

Aj(n) =
(n + j − 2)!(2n − j − 1)!

(j − 1)!(n − j)!(2n − 2)!
A(n − 1)

where j , is the position of the 1 in the leftmost column.

Luigi Cantini Determinants of doubly-refined ASM



Row-column refined enumerations

From the definining properties of an ASM it follows that on the
top/bottom rows and left/rightmost columns there is a single 1

1

6

n

j


0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0


We can consider ASM enumerations refined by the position of some of
these 1s. The simplest one is

Theorem: Single refined ASM enumerations [Zeilberger ’96]

Aj(n) =
(n + j − 2)!(2n − j − 1)!

(j − 1)!(n − j)!(2n − 2)!
A(n − 1)

where j , is the position of the 1 in the leftmost column.

Luigi Cantini Determinants of doubly-refined ASM



The most general one will be

Ait ,ib,j`,jr (n)

where we specify the positions it , ib of the top and bottom 1s and j`, jr of
the leftmost and rightmost 1s

1 - n
ib

1

6

n

j`

1 - n
it

1

6

n

jr


0 1 0 0 0
1 −1 1 0 0
0 0 0 0 1
0 1 −1 1 0
0 0 1 0 0


Or even with weights

Ait ,ib,j`,jr (n|τ, ν)
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I Generating functions for weighted Doubly long list of results, recnt
ones by Colomo and Pronko, Ayer and Romik, Behrend. For a
discussion of these and previous results see exstensive discussion in
recent work of Behrend.

I Generating function of weighted Doubly Refined (Row-Row) ASM
coincide with the generating functions of DPP (properly weighted
and refined) [Beherend, Di Francesco, Zinn-Justin]

I Generating function of Doubly Refined (Row-Row) ASM coincide
with the generating functions of doubly refined TSSCPP [Fonseca,
Zinn-Justin]
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Determinant of doubly refined ASM enumerations

Consider the doubly refined enumerations A
(RR)
i,j (n), A

(RC)
i,j (n) as matrices

Theorem [P. Biane-L.C.-A. Sportiello, L.C])

detA
(RR)
i,j (n) = (−A(n))n−3

detA
(RC)
i,j (n) = An−2(n)

I Notice that while it seems natural to look at detA
(RR)
i,j (n|τ, ν), it

doesn’t factorize nicely unless τ and ν satisfy some fancy relation.

I The approach developed in [BCS] is not general enough to obtain
the second identity.
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Symmetry classes

Most of the symmetry classes of ASM, share the same nice enumerative
properties of the simple ASM.
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with its fundamental region.
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Symmetry classes

Most of the symmetry classes of ASM, share the same nice enumerative
properties of the simple ASM.

Off-Diagonal Symmetric Alternating Sign Matrices (OSASM) of size
2n × 2n 

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 −1 0 1
0 1 −1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0


It turns out that
Theorem [Kuperberg])

AVS(2n + 1) = AO(2n) =
n−1∏
j=0

(3j + 2)
(2j + 1)!(6j + 3)!

(4j + 2)!(4j + 3)!
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Double refinements for VSASM and OSASM

For VSASM: we call
AVS
i,j (2n + 1)

the number of VSASM of size 2n + 1 such that:
I the 1 in the leftmost column in posistion i − 1
I the next to central column has j − 1 entries equal to −1.



0 0 0 1 0 0 0
0 0 1 −1 1 0 0
1 0 −1 1 −1 0 1
0 1 0 −1 0 1 0
0 0 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


-

I The index j runs from 1 to n
I Since AVS

i,j (2n + 1) = AVS
2n−i,j(2n + 1) we can also restrict to

1 ≤ i ≤ n and think at AVS
i,j (2n + 1) as an n × n matrix.

Luigi Cantini Determinants of doubly-refined ASM



Double refinements for VSASM and OSASM

For VSASM: we call
AVS
i,j (2n + 1)

the number of VSASM of size 2n + 1 such that:
I the 1 in the leftmost column in posistion i − 1
I the next to central column has j − 1 entries equal to −1.



0 0 0 1 0 0 0
0 0 1 −1 1 0 0
1 0 −1 1 −1 0 1
0 1 0 −1 0 1 0
0 0 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


-

I The index j runs from 1 to n
I Since AVS

i,j (2n + 1) = AVS
2n−i,j(2n + 1) we can also restrict to

1 ≤ i ≤ n and think at AVS
i,j (2n + 1) as an n × n matrix.

Luigi Cantini Determinants of doubly-refined ASM



Double refinements for VSASM and OSASM

For VSASM: we call
AVS
i,j (2n + 1)

the number of VSASM of size 2n + 1 such that:
I the 1 in the leftmost column in posistion i − 1
I the next to central column has j − 1 entries equal to −1.



0 0 0 1 0 0 0
0 0 1 −1 1 0 0
1 0 −1 1 −1 0 1
0 1 0 −1 0 1 0
0 0 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


-

I The index j runs from 1 to n
I Since AVS

i,j (2n + 1) = AVS
2n−i,j(2n + 1) we can also restrict to

1 ≤ i ≤ n and think at AVS
i,j (2n + 1) as an n × n matrix.

Luigi Cantini Determinants of doubly-refined ASM



Double refinements for VSASM and OSASM

For VSASM: we call
AVS
i,j (2n + 1)

the number of VSASM of size 2n + 1 such that:
I the 1 in the leftmost column in posistion i − 1
I the next to central column has j − 1 entries equal to −1.



0 0 0 1 0 0 0
0 0 1 −1 1 0 0
1 0 −1 1 −1 0 1
0 1 0 −1 0 1 0
0 0 0 1 0 0 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0


-

I The index j runs from 1 to n
I Since AVS

i,j (2n + 1) = AVS
2n−i,j(2n + 1) we can also restrict to

1 ≤ i ≤ n and think at AVS
i,j (2n + 1) as an n × n matrix.

Luigi Cantini Determinants of doubly-refined ASM



Double refinements for VSASM and OSASM

For OSASM we just consider the row-column refinement

AOS
i,j (2n)

which consists in fixing the positions of the 1s in the leftmost column and
in the bottom row


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 −1 0 1
0 1 −1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
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Determinant of doubly refined VSASM and OSASM
enumerations

Theorem [L.C])

detAVS
i,j (2n + 1) = (−AVS(2n − 1))n−3

detAOS
i,j (2n) = (−AOS(2n − 2))3n−6

These two identities and the ones related to the non symmetric ASM will
be deduced from two general determinantal identities and not from a
case by case analysis.
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6-Vertex model with domain wall boundary conditions

I Configurations of the 6-vertex model with domain wall boundary
conditions are in bijection with ASM.

I To each vertex configuration give a Boltzmann weight which
depends on the horizontal and vertical spectral parameter

a(z ,w) = b(w , z) = qz − q−1w

c(z ,w) = (q2 − q−2)
√
zw
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6 vertex for USASM and OSASM

I For ASM with symmetries, the underlying graphs cover the
fundamental domains of the matrix.

I Instead of VSASM it is more convenient to use USASM
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Partition functions

Zn(q; z; w) =

∏
1≤i,j≤n M(zi ,wj)

∆(z)∆(−w)
det

(
c(zi ,wj)

M(zi ,wj)

)
1≤i,j≤n

ZU
2n(q; z; w) =

∏n
i=1 ωn(zi ,wi )

∏
1≤i,j≤n M

U(zi ,wj)

∆(z + 1
z )∆(−w − 1

w )
det

(
c(zi ,wj)

MU(zi ,wj)

)
1≤i,j≤n

ZO
2n(q; z) =

∏
1≤i<j≤2n M

O(zi , zj)

∆(z)
Pf

(
c(zi , zj)(zi − zj)

MO(zi , zj)

)
1≤i,j≤2n

With

M(z ,w) = a(z ,w)b(z ,w)

MU(z ,w) = a(z ,w)b(z ,w)a(x−1y−1, 1)b(x−1y−1, 1)

MO(z ,w) = a(zw , 1)b(zw , 1)

ωn(z ,w) = wn(β − β−1w−1)(q2 − q−2z2)
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Partition functions and generating functions

The generating function of row-row doubly refined ASM

A(R,R)
n (τ, λ, x , y) =

∑
1≤i,j≤n

A
(R,R)
i,j (n|τ, λ) x i−1y j−1

can be read from the partition function of the 6-vertex models upon
specialization of some of the spectral parameters

An (τ, λ, x , y) =

(
b(1, t)a(1, t)

b(z1, t)a(zn, t)

)n−1
Zn(q, z1, 1, zn; t1)

c(z1, t)c(zn, t)c(1, t)n−2b(1, t)n2−n

with

τ =
c2(1, t)

b2(1, t)
, λ =

a2(1, t)

b2(1, t)

x =
a(z1, t)b(1, t)

a(1, t)b(z1, t)
, y =

b(zn, t)a(1, t)

b(1, t)a(zn, t)
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Modified partition functions and generating functions

In order to extract the generating function of row-column doubly refined
ASM from the partition function one need to discard the contribution
from the ASMs in which the 1 is in the corner

A(R,C)
n (τ, λ, x , y) =

∑
1≤i,j≤n

A
(R,C)
i,j (n|τ, λ) x i−1y j−1

= A (n − 1|τ, λ) + xyÃ(R,C)
n (τ, λ, x , y)

Ã(R,C)
n (τ, λ, x , y) is directly related to a partition restricted to the

6-vertex configurations with a vertex of type “a” in the corner

Zn(q; z; w) = Z c
n (q; z1; z;w1; w) + a(z1,w1)Z (R,C)

n (q; z1; z;w1; w)

Ã(R,C)
n (τ, λ, x , y) ∝ Z (R,C)

n (q; z1; 1;w1; t1)
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Partition functions: combinatorial point
At the combinatorial point q = e iπ/3 the partition functions become
symmetric in the joint set of variables z,w, and equal to a (Symplectic)
Schur polynomial

Zn(q = eπi/3; z; w) = Sλ(n)(z,w)

ZU
2n(q = eπi/3; z; w)∏n

i=1 w
n
i ω(zi ,wi )

= ZO
2n(q = eπi/3; z) = SSympl

λ(n) (z,w)

corresponding to the double stair Young diagram

λ(n) =

n−1︷ ︸︸ ︷
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Generalized Gaudin polynomials

To a pair of polynomials in two variables P(x , y),Q(x , y) we associate a
family of polynomials that we call

Generalized Gaudin Polynomials

Gn,P,Q(z; w) =

∏
1≤i,j≤n P(zi ,wj)

∆(z)∆(w)
det

(
Q(zi ,wj)

P(zi ,wj)

)
1≤i,j≤n

I They are polynomials symmetric in the variables z and w

I Natural generalization of 6W-DWBC partition functions

I If sx/y = degx/y P(x , y) and rx/y = degx/y Q(x , y) then

degzi/wj
Gn,P,Q(z; w) ≤ (sx/y − 1)(n − 1) + rx/y

I They satisfy nice relations when specialized at (x̄ , ȳ), a zero of
P(x , y). For Q(x , y) = 1 these recursion uniquely determine
Gn,P,Q(z; w).
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A second family of Gaudin polynomials can be introduced if we suppose
that the P(x , y) is divided by a degree 1 polynomial pα(x , y)

P(x , y) = pα(x , y)P̃(x , y) with pα(x , y) =
1∑

i,j=0

pα,i,jx
iy j

First introduce the polynomials

G̃(α)
n,P,Q(x ; z; y ; w) = Q(x , y) (det pα)n−1

n−1∏
j=1

P̃(x ,wj)P̃(zj , y)Gn−1,P,Q(z; w),

where det pα is the determinant of matrix of coefficients of pα(x , y).

Modified Gaudin polynomials )

G(α)
n,P,Q(x ; z; y ; w) =

Gn,P,Q(x , z; y ,w)− G̃(α)
n,P,Q(x ; z; y ; w)

pα(x , y)
.
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Partition functions as Gaudin polynomials

Apart for some trivial factors the partition functions of the 6−vertex
model on graphs corresponding to ASM, USASM (and OSASM at the
combinatorial point) are Gaudin polynomials

Zn(q; z; w) ∝ Gn,M,1(z; w)

ZU
2n(q; z; w) ∝ Gn,M+(q2−q−2)2,1(z + z−1; w + w−1)

Z (R,C)
n (q; x ; z; y ; w) ∝ G(α)

n,M,1(z; w)

Z
OSASM,(R,C)
2n+1 (q = e iπ/3; x ; z; y ; w) ∝ G(α)

n,M̃+(q2−q−2)2,1
(x ; z; y ; w)|q=e iπ/3

with

M(x , y) = −a(x , y)b(x , y) = x2 + y2 − (q2 + q−2)xy

M̃(x , y) = M(x + x−1, y + y−1)

pα(x , y) = a(x , y)
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Gaudin Polynomials and Schur functions

Using some identities due to Okada one finds

Gn,Us+2,Ur+1 (z; w) = Sλ(n,s,r)(z,w)

Gn,Ũs+2,Ũr+1
(z; w) = SSympl

λ(n,s,r)(z,w)

with Um(x , y) = xm−ym

x−y the Chebyshev polynomial of second type,

Ũm(x , y) = Um(x , y)Um(xy , 1), r ≤ s and

λ(n, s, r) =

(n−1)s︷ ︸︸ ︷

︸︷︷︸
r︸ ︷︷ ︸

s
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I The Gaudin polynomials with Q = 1 and P(x , y) =
∏s−1
α=0(x − tαy)

have been studied by Lascoux and proven to be given by
determinant of certain Schur functions.

I The Gaudin polynomial corresponding to the 6-V partition function
(P(x , y) = M(x , y) is diagonal in the basis of MacDonald
polynomials (t ↔ q) [Kirillov-Noumi, Warnaar]∏
1≤i,j≤

(qxiyj ; t)∞
(xiyj ; t)∞

Gn,M,1(z; w) =
∑
λ

bλ(t, q)gλ(q; t, q)Pλ(x ; t, q)Pλ(y ; t, q)
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Determinants of Gaudin Polynomials

Call s = min{sx , sy}

Theorem

Let {xi , yi}1≤i≤m be indeterminates. The polynomial

det (Gn,P,Q(xi , z; yi ,w))1≤i,j≤m

is divided by Gm−s−1
n−1,P,Q(z; w).

If P(x , y) is divided by pα(x , y), then

det
(
G(α)
n,P,Q(xi ; z; yj ,w)

)
1≤i,j≤m

is divided by Gm−sn−1,P,Q(z; w).

The origin of these factors traces back to a classical determinantal
identity first discovered by Sylvester
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Sylvester identity

Consider a (n + r)× (n + r) matrix A with a n × n minor B

}
n︸ ︷︷ ︸

r

︸ ︷︷ ︸
n

B

A =





For 1 ≤ i , j ≤ r , consider the minor A(i , j) formed by B, the ith column
and the jth row, and denote its determinant by ai,j = detA(i , j).

Theorem [Sylvester]

det a = detA(detB)r−1
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Determinants of Gaudin Polynomials

Assume now that sx = sy = s and rx = ry = r and call

Dn,P,Q(z; w) :=
det (Gn,P,Q(z, xi ; w, yj))1≤i,j≤(s−1)(n−1)+r+1

∆(x)∆(y)
,

D(β)
n,P,Q(z; w) :=

det
(
G(β)
n,P,Q(xi ; z; yj ; w)

)
1≤i,j≤(s−1)(n−1)+r

∆(x)∆(y)
.

We can provide explicit formulae for these functions.

For 1 ≤ α ≤ s, call φα(y) the zeros of P(x , y) as a polynomial in x ,
ψα(x) the zeros of P(x , y) as a polynomial in y and write

P(x , y) = P1(x)
s∏

α=1

(y − φα(x)) = P2(y)
s∏

α=1

(x − ψα(y))
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Determinants of Gaudin Polynomials
Theorem

Dn,P,Q(z; w) = kn,P,Q

 ∏
1≤i<j≤n−1

G
(1)
n,P(zi , zj)G

(2)
n,P(wi ,wj)


n−1∏

j=1

G̃
(1)
n,P,Q(zj)G̃

(2)
n,P,Q(wj)

 ∏
1≤i,j≤n−1

Ps−1(zi ,wj)

Gm−s−1
n−1,P,Q(z; w)

D(β)
n,P,Q(z; w) = k

(β)
n,P,Q(z,w)

 ∏
1≤i<j≤n−1

G
(1)

n,P̃
(zi , zj)G

(2)

n,P̃
(wi ,wj)


n−1∏

j=1

G̃
(1)

n,P̃,Q
(zj)G̃

(2)

n,P̃,Q
(wj)

 ∏
1≤i,j≤n−1

pβ(zi ,wj)P
s−2(zi ,wj)

Gm−s−1
n−1,P,Q(z; w)

with m = (s − 1)(n − 1) + r + 1.
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G
(1)
n,P(zi , zj) =

Ps
1(zi )P

s
1(zj)

∏
1≤α,β≤s ψα(zi )− ψβ(zj)

(zi − zj)s

G
(2)
n,P(wi ,wj) =

Ps
2(wi )P

s
2(wj)

∏
1≤α,β≤s φα(wi )− φβ(wj)

(wi − wj)s

G̃
(1)
n,P,Q(z) = P r

1(z))
s∏

α=1

Q(z , φα(z))

G̃
(2)
n,P,Q(z) = P r

2(z))
s∏

α=1

Q(ψα(w),w)

These are polynomials of zs and ws.

kn,P,Q = (−1)s(n−1) detQi,j (detPi,j)
n−1

k
(β)
n,P,Q(z,w) is a polynomial of degree r in zi and wj , that I cannot pin

down, unless Q(x , y) = 1.

k
(β)
n,P,1(z,w) = (−1)s(n−1) (detPi,j)

n−1
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