
  

`Workshop on Combinatorial Physics'
 Cardiff, 17-19 December 2013

Filippo Colomo
INFN, Firenze

Joint work with: 
Andrei Pronko (PDMI-Steklov, Saint-Petersbourg)

The Arctic Circle re-revisited 
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Domino tiling of a square domino:=   tile



  

 Square  Aztec Diamond of Order 

( )
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Domino tiling of an Aztec diamond

[Jockush-Propp-Shor '95]
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Domino tiling of an Aztec diamond

[Jockush-Propp-Shor '95]

The Arctic Circle Theorem
[Jockush-Propp-Shor '95]

 such that “almost all” (i.e. with probability
) randomly picked domino tilings of  

have  a  temperate  region  whose  boundary  stays
uniformly within distance  from the circle of radius

.



  Rhombi tilings of an hexagon
(a.k.a. Boxed plane partitions)  [Cohn-Larsen-Propp'98]



  

● Corner melting of a crystal [Ferrari-Spohn '02]
● Plane partitions [Cerf-Kenyon'01][Okounkov-Reshetikhin'01]



  ● Skewed plane partitions [Okounkov-Reshetikhin '05-'07]
[Boutillier-Mkrtchyan-Reshetikhin-Tingley '12]



  
The model has been  solved in full generality  
[Kenyon, Sheffield, Okounkov, '03-'05]  with deep 
implications in algebraic geometry and algebraic combinatorics.

Previously shown models of  
● domino tilings;
● rhombi tilings;
● plane  partitions; boxed plane partitions; skewed plane partitions ...

are all avatars of the same model, `dimer covering of regular planar bipartite
lattices', exhibiting emergence of phase separation, limit shapes, frozen boundaries
/arctic curves, and fluctuations governed by Random Matrix models. 



  

Convex region vs Concave region

Smooth curve vs Singular curve  



  
Rhombi tilings of an hexagon with an erased corner [Kenyon, Okounkov '05]



  
Rhombi tilings of an hexagon with an erased corner [Kenyon, Okounkov '05]



  Aztec Diamond with a cut-off corner
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Some numerical results
[FC-Sportiello, to appear]

● Pictures are produced with a C code based on a version kindly provided by Ben
Wieland, exploiting the `Coupling From The Past' algorithm [Propp-Wilson '96].

● We freeze a rectangular region of size   in the  top-left corner
(we restrict to the symmetric situation ,  for simplicity)
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Define:   
  :=   number of  tilings of 

1) Compute   for arbitrary   integers

2) Investigate the behaviour of   in the scaling limit:

  

In particular,  evaluate the `free energy per domino':



  

Introduce bias (weighted enumeration)

To each NE-SW domino assign weight:    

To each NW-SE domino assign weight:           

(  corresponds to the uniform measure)

For generic , the  Arctic Circle becomes an Arctic Ellipse.



  

Define:   
  :=  weighted number of  tilings of 

1) Compute   for arbitrary   integers

2) Investigate the behaviour of   in the scaling limit:

  

In particular,  evaluate the `free energy per domino':



  

Recall:
     :=  weighted number of  tilings of 

  :=  weighted number of  tilings of 
= (NB: does not depend on  )

Define:  



  

Theorem:

           

[FC-Pronko'08] [Pronko'13]

● Proof  relies upon the correspondence of  domino tilings of  Aztec
Diamond  with  the  six-vertex  model  with  Domain  Wall  boundary
conditions.

● Main ingredient in the derivation is  the Quantum Inverse Scattering
Method. 

●   is the probability of observing, in a random tiling of the plain
Aztec Diamond, a `frozen' corner region of size  

● Actually this is a particular case of a more general formula holding
for ASM, six-vertex model, etc... 



  

           

(Hankel Determinant)

Introducing `time'  via  , and restricting to the determinant:

 

Sylvester identity for determinants immediately implies:

 

  is the tau-function of a semi-infinite Toda chain.

Some properties of    [Pronko'13]



  

           

(Hankel Determinant)

 (  fixed)

 (  fixed)

(Toda-like differential equations)

Some properties of   



  

           

(Hankel Determinant)

     
Following in spirit  [Zinn-Justin'00], one can rewrite:

 

(Random Matrix Model with discrete measure)

Some properties of   



  

  at some special values of parameters

●

                    (Meixner)

●

●

               (chose    )

●

●

               (Hahn)



  

Free energy: differential eq. approach
For simplicity we restrict to the symmetric situation . 

We define  , satisfying:

Following [Korepin-Zinn-Justin'00], we assume 

We get for :

We want to solve for      in the domain     .

NB: free energy density is given by:     



  

Initial and boundary conditions

●

●

●

●

where

is given by: 

 



  

Solution of the differential equations ( )

The derivation is technically involved and not particularly interesting.

The final solution is almost trivial, the non trivial contribution coming from
the integration constant  

We have the following result:

                                                                                       

       

where 



  

Free energy: Random Matrix Model approach
Again we restrict for simplicity to the symmetric situation . 
Following [Zinn-Justin'00], we define:

 

Hermitean  random matrix integral (with a discrete measure)
[Douglas-Kazakov'93]     

To investigate the large  behaviour of , one need to rescale:

In the large   limit, sums can now be reinterpreted as Riemann sums, and replaced
by integrals:

where           



  

Write the integrand as:

Saddle-point eqs. read:

The solution of the  saddle-point eqs. is given by the equilibrium configuration of  a
set of mutually repelling charged particles, in the linear potential   ,
confined to the real interval  :

       

Saddle-point approximation



  

Introduce a normalized density of solutions of saddle-point eqs.:

 

Saddle-point approximation

Discreteness of eigenvalues implies   

Standard methods (e.g. using the resolvent) can be exploited  to determine   
and solve the model. 

The only caveat is the implementation of the constraint: 

(in fact, just a minor technical complication)
 [Douglas-Kazakov'93],[Brézin-Kazakov'99],[Zinn-Justin'00]



  

NB: We have two `hard walls' at    and  

       

Near the edges of its support the density as a universal behaviour:

If   ,  then, e.g. in the vicinity of   :

The discreteness constraint  thus implies:

In the vicinity of an hard wall:          



  

● i)      large    (or small ):  potential well is deep and narrow

The eigenvalues accumulate to the left:

                   

                

Two scenarios



  

● i)      large    (or small ):  potential well is deep and narrow

The eigenvalues accumulate to the left:

                   

                

Two scenarios

● ii)      small    (or large ):            potential well is wide and  not so deep

The eigenvalues expand till the right wall:

                 



  

Scenario i)      
We have:        and ,    thus:       

  

Solving  the saddle-point eqs determines endpoints    and  and density :

NB1: Exactly the same Random Matrix Model appears: (but with  ):
● in  [Brezin-Kazakov'00] (statistics of partitions for the permutation group) 
● in   [Zinn-Justin'00],  (ferroelectric  phase  ( )  of  the  DW  6VM  partition

function.

NB2: This scenario holds as long as                            

a b c

1



  

Scenario ii)      

We have:        and ,    thus:       

  

Again, solving saddle-point eqs determines endpoints  and  and density :

a b c

1



  

c=1.1

c=1.9

c=1.6

c=2

Density:                                           



  

In all we have  the following result:

                                                                                       

       

where 

 .

NB1:      is  the value of  corresponding to the Arctic Ellipse

NB2:    3rd order phase transition at                       
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Generic   case:

Potential        is not linear any more:

      

bulky calculations, but everything remains qualitatively the same:

Two scenarios; in scenario i)  we get the value

for the right end-point.   
Equating    and expressing  the result  in terms of cartesian coordinates:

we readily recover the Arctic Ellipse.

Moreover, when the tip of the rectangle reaches the position of the Arctic Ellipse
in the original, plain Aztec Diamond, a 3rd order phase transition occurs. 



  

● When the tip  of the rectangle reaches the position of the  Arctic Ellipse in the
original, plain Aztec Diamond, a 3rd order phase transition occurs.

● As we vary ,  the tip of the rectangle, never touches the Arctic Circle, but
repels it away.

● Due to the correspondence between tilings of Aztec diamond and non-
intersecting lattice paths , similar phenomena should be observed when you
constrain the lattice paths under  a `bridge', 

● and also when you constrain a set of non-intersecting brownian motion or
vicious walkers (watermelon) through a slit. 

A new universality class?
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