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number of ingoing arrows.
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19 admissible configurations around a vertex

them explicit, it will be convenient to introduce the short-hand notation

[w] = w ≠ w≠1.

The weights of the R-matrix are given by

a(w) = [qw][q2w], b(w) = [w][qw], c(w) = [q≠1w][w],
x(w) = [q2][qw], y(w) = [q2][w], z(w) = [q][q2], (5) eqn:defweights

d(w) = b(w) + z(w)

Here, q is a non-zero number, the so-called crossing parameter.

a b c

x y

z d

Figure 1: Vertices and weights of the nineteen-vertex model.

3.1.1 Basic properties

Here we recall some basic and useful properties of the R-matrix.

Elementary symmetries. The Boltzmann weights R“”

–—

of the present model are non-
vanishing only if – + — = “ + ” (“ice rule”). Hence, if we introduce sz such that sz|–Í =
(– ≠ 1)|–Í for – = 0, 1, 2 then

[sz ¢ 1 + 1 ¢ sz, R(w)] = 0.

Degeneration points: For generic values of the parameters w, q the R-matrix is of full
rank dim(V ¢ V ) = 9. At the points w = 1, q±1, q±2 it displays certain special properties
[7, 9]. We start with w = 1 where the rank is still maximal. We have

R(w = 1) = [q][q2]P.
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with statistical weights

a = [qw ][q2w ]

b = [w ][qw ]

c = [q�1w ][w ]

y = [q2][w ]

x = [q2][qw ]

z = [q2][q]

d = b + z

[w ] = w � w�1
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Weights solve the Yang-Baxter equation (Zamolodchikov & Fateev `81).
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H = {Q,Q†} = QQ† +Q†Q, Q2 = (Q†)2 = 0

Dynamical supersymmetry
[N,Q] = Q

[H,Q] = [H,Q†] = 0
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Quadratic sum rule for the diagonal twist
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a(w) = [qw ]

b(w) = [qw�1]

c(w) = [q2]
z1 z2 z3 · · · zN

w1

w2

w3

...

wN

X

↵

�↵(w
�1
1 , ... ,w�1

N )�↵(w1, ... ,wN) = Z IK
N (w1, ... ,wN ;w1, ...wN)

For the diagonal twist we have the quadratic sum rule

With the partition function of the 6-vertex model on an N x N square with 
domain-wall boundary conditions

Z IK
N ({z}, {w}) =

QN
i ,j=1 a(zi/wj)b(zi/wj)Q
1i<jN [zi/zj ][wi/wj ]

⇥ det
i ,j=1,...,N

✓
c(zi/wj)

a(zi/wj)b(zi/wj)

◆
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Conjecture for the spin-reversal twist
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Christian Hagendorf Cardiff 2013

Conjecture for the spin-reversal twist
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X

↵

�↵(w
�1
1 , ... ,w�1

N )�↵(w1, ... ,wN) =
ZHT
N (w1, ... ,wN ;w1, ...wN)

Z IK
N (w1, ... ,wN ;w1, ...wN)

For the spin-reversal twist the we have the quadratic sum rule

Partition function of the six-vertex model with half-turn boundary conditions

Partition function ratio (Kuperberg)

z1

...

zN

z1

...

zN

w1 wN· · ·

ZHT
N ({z}, {w})
Z IK
N ({z}, {w})

=

QN
i ,j=1 a(zi/wj)b(zi/wj)
QN

i ,j=1[zi/zj ][wi/wj ]
det

i ,j=1,...,N
MHT

ij

MHT
ij =

1

a(zi/wj)
+

1

b(zi/wj)
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Conclusion
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• Dynamical supersymmetry in 19-vertex model (with twists).  

• Ground states and weighted enumeration of alternating sign 
matrices.  

• Inhomogeneous models:

• Elliptic extension: 41-vertex model

19-vertex model	


with twists

6-vertex model	


with DWBC

?


