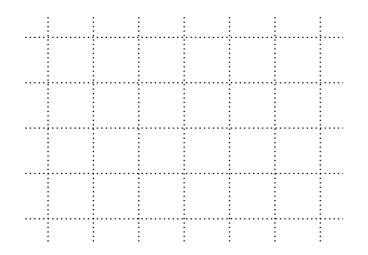
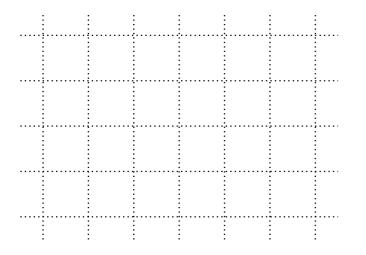
The nineteen-vertex model: from supersymmetry to combinatorics

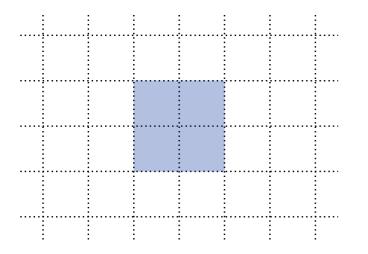
Christian Hagendorf Université Catholique de Louvain Institut de Recherche en Mathématique et Physique

Christian Hagendorf

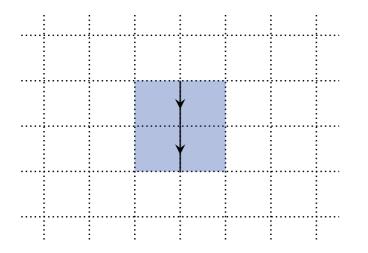




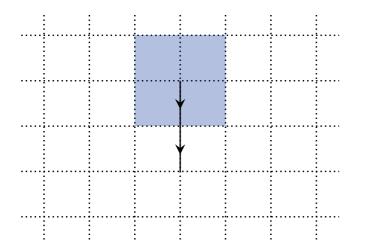
- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.



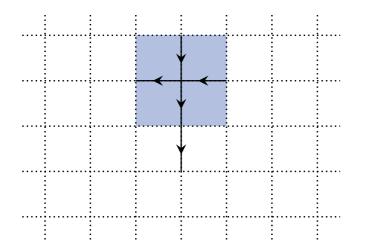
- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.



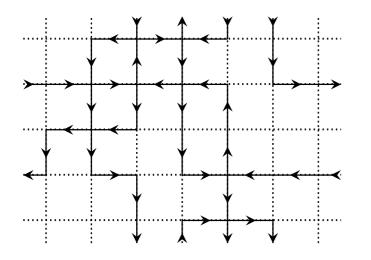
- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.



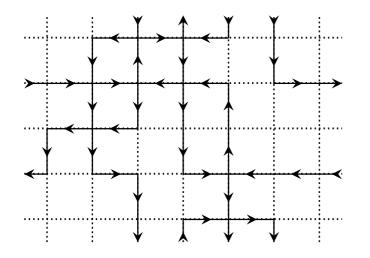
- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.



- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.

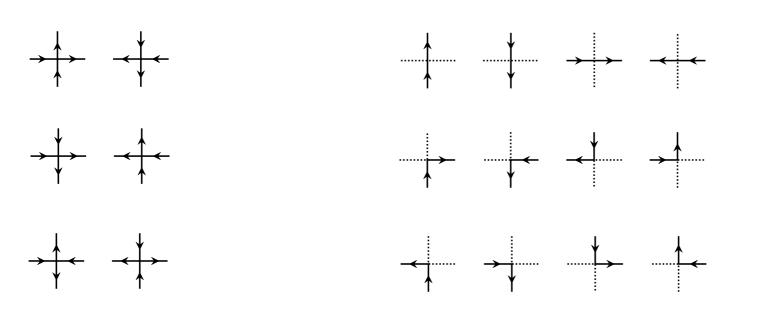


- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.

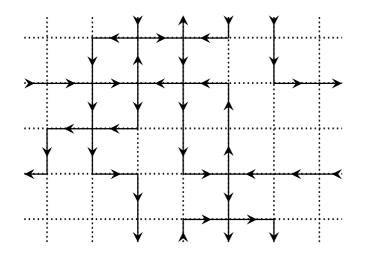


- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.

19 admissible configurations around a vertex

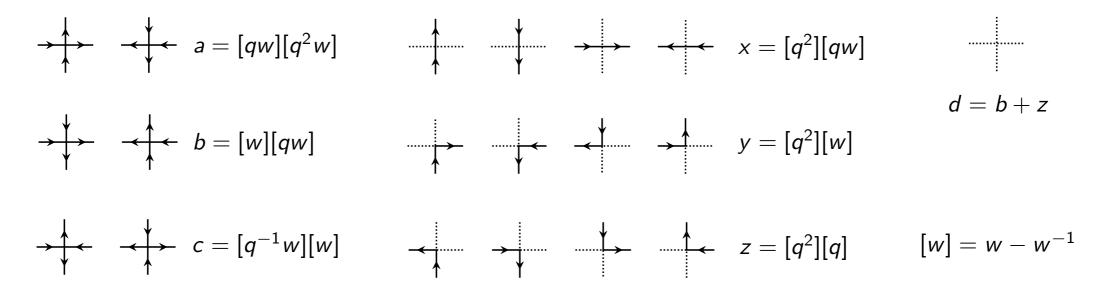


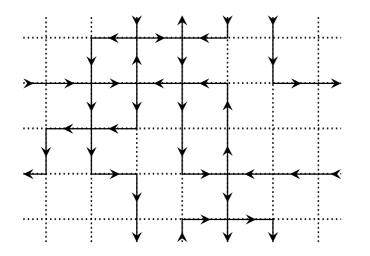
.....



- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.

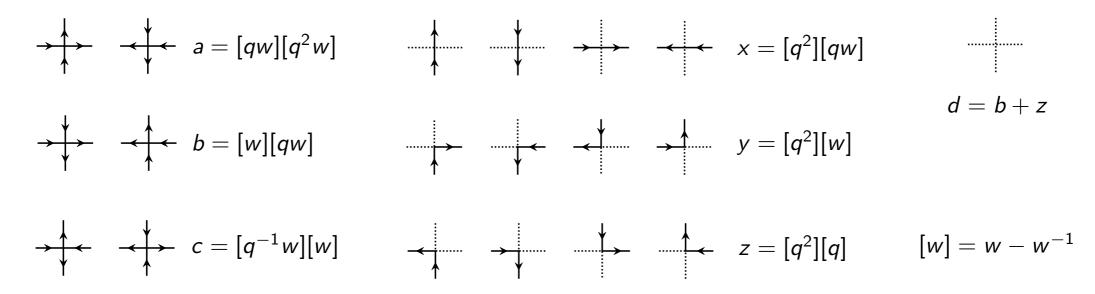
19 admissible configurations around a vertex with statistical weights



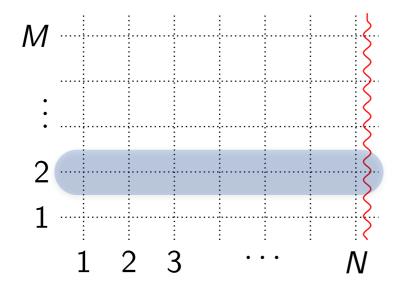


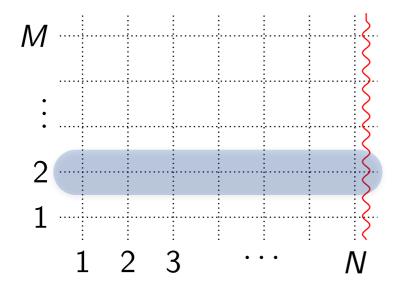
- Every edge is either oriented or unoriented.
- At every vertex the number of outgoing arrows equals the number of ingoing arrows.

19 admissible configurations around a vertex with statistical weights

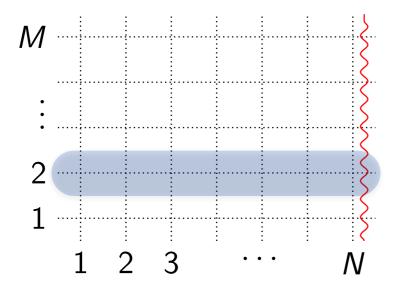


Weights solve the Yang-Baxter equation (Zamolodchikov & Fateev `81).





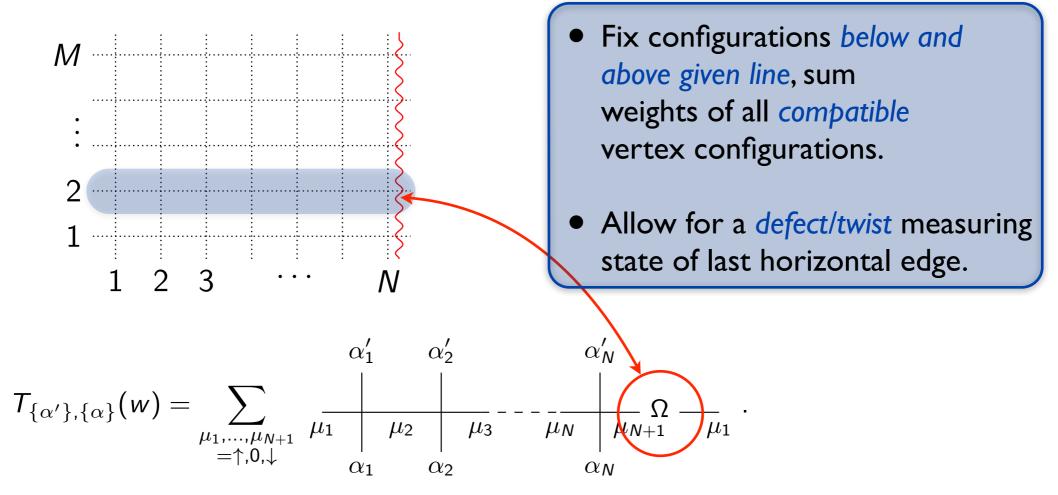
- Fix configurations below and above given line, sum weights of all compatible vertex configurations.
- Allow for a <u>defect/twist</u> measuring state of last horizontal edge.



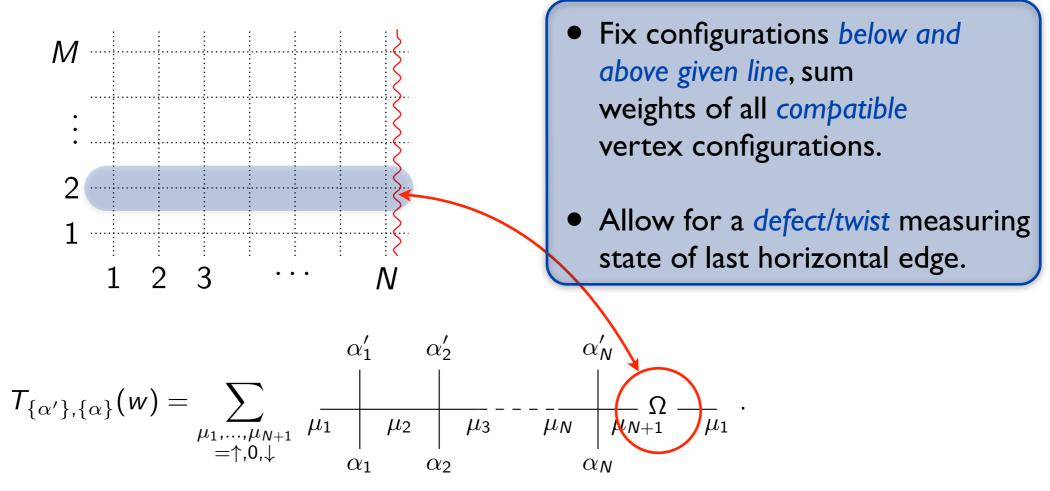
- Fix configurations below and above given line, sum weights of all compatible vertex configurations.
- Allow for a <u>defect/twist</u> measuring state of last horizontal edge.

$$T_{\{\alpha'\},\{\alpha\}}(w) = \sum_{\substack{\mu_1,\ldots,\mu_{N+1} \\ =\uparrow,0,\downarrow}} \begin{array}{c|c} \alpha'_1 & \alpha'_2 & \alpha'_N \\ \hline \mu_1 & \mu_2 & \mu_3 & - -\frac{\mu_N}{\mu_N} \\ \hline \mu_N & \mu_{N+1} & -\mu_1 \\ \hline \alpha_1 & \alpha_2 & \alpha_N \end{array}$$

Matrix elements of an operator T(w) on the space $V^{\otimes N}$, $V = \text{span}\{e_{\uparrow}, e_{0}, e_{\downarrow}\}$



Matrix elements of an operator T(w) on the space $V^{\otimes N}$, $V = \text{span}\{e_{\uparrow}, e_0, e_{\downarrow}\}$



Matrix elements of an operator T(w) on the space $V^{\otimes N}$, $V = \text{span}\{e_{\uparrow}, e_{0}, e_{\downarrow}\}$

Commuting transfer matrices[T(w), T(w')] = 0because of (1) YBE and (2) choice of boundary conditionsDiagonal
twist $\Omega_{+} = \begin{pmatrix} -1 & \\ & 1 & \\ & & -1 \end{pmatrix}$ Non-diagonal
twist $\Omega_{-} = -\begin{pmatrix} & 1 & \\ & 1 & \\ & 1 & \end{pmatrix}$

$$T(w) = \text{const.} \times S\left(1 + (w - 1)\left(\frac{2}{[q^2]}H - N\right) + \dots\right)$$

$$T(w) = \text{const.} \times S\left(1 + (w - 1)\left(\frac{2}{[q^2]}H - N\right) + \dots\right)$$

I. Shift operator: twist + cyclic shift

$$S(v_1 \otimes \cdots \otimes v_{N-1} \otimes v_N) = \Omega v_N \otimes v_1 \otimes \cdots \otimes v_{N-1}$$

$$T(w) = \text{const.} \times S\left(1 + (w - 1)\left(\frac{2}{[q^2]}H - N\right) + ...
ight)$$

I. Shift operator: twist + cyclic shift

$$S(v_1 \otimes \cdots \otimes v_{N-1} \otimes v_N) = \Omega v_N \otimes v_1 \otimes \cdots \otimes v_{N-1}$$

2. Spin-chain Hamiltonian: spin-I XXZ (Zamolodchikov & Fateev `81)

$$H = \sum_{j=1}^{N} \left(\sum_{a=1}^{3} J_a (s_j^a s_{j+1}^a + 2(s_j^a)^2) - \sum_{a,b=1}^{3} A_{ab} s_j^a s_j^b s_{j+1}^a s_{j+1}^b \right)$$

$$J_1 = J_2 = 1, \ J_3 = \frac{1}{2} (q^2 + q^{-2}), \quad A_{12} = 1, \ A_{13} = A_{23} = q + q^{-1} - 1, \ A_{aa} = J_a.$$

• Spin-I representation of $\mathfrak{su}(2)$: $s^a, \ a = 1, 2, 3$
• Boundary conditions: $s^a_{N+1} \equiv \Omega_1 s_1^a \Omega_1^{-1}$

$$T(w) = \text{const.} \times S\left(1 + (w - 1)\left(\frac{2}{[q^2]}H - N\right) + ...
ight)$$

I. Shift operator: twist + cyclic shift

$$S(v_1 \otimes \cdots \otimes v_{N-1} \otimes v_N) = \Omega v_N \otimes v_1 \otimes \cdots \otimes v_{N-1}$$

2. Spin-chain Hamiltonian: spin-I XXZ (Zamolodchikov & Fateev `81)

$$H = \sum_{j=1}^{N} \left(\sum_{a=1}^{3} J_a (s_j^a s_{j+1}^a + 2(s_j^a)^2) - \sum_{a,b=1}^{3} A_{ab} s_j^a s_j^b s_{j+1}^a s_{j+1}^b \right)$$

$$J_1 = J_2 = 1, \ J_3 = \frac{1}{2} (q^2 + q^{-2}), \quad A_{12} = 1, \ A_{13} = A_{23} = q + q^{-1} - 1, \ A_{aa} = J_a.$$

• Spin-I representation of $\mathfrak{su}(2)$: $s^a, \ a = 1, 2, 3$
• Boundary conditions: $s^a_{N+1} \equiv \Omega_1 s_1^a \Omega_1^{-1}$

Dynamical supersymmetry
$$[N, \mathfrak{Q}] = \mathfrak{Q}$$
 $H = \{\mathfrak{Q}, \mathfrak{Q}^{\dagger}\} = \mathfrak{Q}\mathfrak{Q}^{\dagger} + \mathfrak{Q}^{\dagger}\mathfrak{Q}, \quad \mathfrak{Q}^2 = (\mathfrak{Q}^{\dagger})^2 = 0 \quad [H, \mathfrak{Q}] = [H, \mathfrak{Q}^{\dagger}] = 0$

Supercharge

$$\mathfrak{Q} = \sqrt{\frac{N}{N+1}} \sum_{j=0}^{N} (-1)^{j} \mathfrak{q}_{j} \qquad \begin{cases} S\mathfrak{q}_{j}S^{-1} = \mathfrak{q}_{j+1}, \quad j = 0, \dots, N-1 \\ S\mathfrak{q}_{N} = \mathfrak{q}_{0} \end{cases}$$
Local splitting operation $\mathfrak{q} : V \to V \otimes V \qquad \mathfrak{q}_{j} \quad \cdots \mid \bigcup_{i=1}^{j} \prod_{j=1}^{j-1} \prod_{j=1}^{j-1} \prod_{j=1}^{j-1} \prod_{i=1}^{j-1} \prod_{i=1}^{j-$

Supercharge

$$\begin{split} \mathfrak{Q} &= \sqrt{\frac{N}{N+1}} \sum_{j=0}^{N} (-1)^{j} \mathfrak{q}_{j} \qquad \begin{cases} S \mathfrak{q}_{j} S^{-1} = \mathfrak{q}_{j+1}, \quad j = 0, \dots, N-1 \\ S \mathfrak{q}_{N} = \mathfrak{q}_{0} \end{cases} \\ \\ \text{Local splitting operation} \quad \mathfrak{q} : V \to V \otimes V \qquad \mathfrak{q}_{j} \quad \cdots \\ \prod_{i=1}^{N-1} \prod_{j=1}^{j-1} \prod_{j=1}^{j-1} \prod_{i=1}^{j-1} \prod_{i=1}^{\prod$$

$$\bigvee - \bigvee = \frac{\Box}{2} - \frac{\Box}{2}$$
$$\mathfrak{q} \otimes 1 - 1 \otimes \mathfrak{q} \mathfrak{q} = \text{boundary terms}$$

Supercharge

$$\mathfrak{Q} = \sqrt{\frac{N}{N+1}} \sum_{j=0}^{N} (-1)^{j} \mathfrak{q}_{j} \qquad \begin{cases} S\mathfrak{q}_{j}S^{-1} = \mathfrak{q}_{j+1}, \quad j = 0, \dots, N-1 \\ S\mathfrak{q}_{N} = \mathfrak{q}_{0} \end{cases}$$
Local splitting operation $\mathfrak{q} : V \to V \otimes V \qquad \mathfrak{q}_{j} \qquad \cdots \qquad \prod_{i=1}^{N-1} \prod_{j=1}^{j-1} \prod_{j=1}^{j-1} \prod_{j=1}^{j-1} \prod_{i=1}^{j-1} \prod_{j=1}^{j-1} \prod_{i=1}^{j-1} \prod_{i=1}^{j-1} \prod_{j=1}^{j-1} \prod_{i=1}^{j-1} \prod_{i=1}^{$

 $\mathfrak{Q}^2 = 0$ on subspaces of $V^{\otimes N}$ where shift operator acts like $S \equiv (-1)^{N+1}$

$$(\mathfrak{q} \otimes 1 - 1 \otimes \mathfrak{q})\mathfrak{q} = \operatorname{boundary terms}$$

Hamiltonian
$$H = \{\mathfrak{Q}, \mathfrak{Q}^{\dagger}\} = \sum_{j=1}^{N-1} \mathfrak{h}_{j,j+1} + \tilde{\mathfrak{h}}_{N,1}$$

$$\mathfrak{h} = - \bigvee - \bigvee + \bigvee + \frac{1}{2} \left(\diamondsuit | + | \diamondsuit \right)$$

Cardiff 2013

In the present case

$$\left\{egin{aligned} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0)\ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow}\ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{aligned}
ight.$$

In the present case

$$egin{array}{lll} \left(egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight) \end{array}$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

In the present case

$$egin{array}{lll} \left\{ egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight.$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

Components:
$$\Phi = \sum_{\alpha} \Phi_{\alpha} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N}$$
, $\Phi_{\alpha} = \Phi_{\alpha}(x)$, $x = \frac{1}{2} (q + q^{-1})$

In the present case

$$egin{array}{lll} \left\{ egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight.$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

Components:
$$\Phi = \sum_{\alpha} \Phi_{\alpha} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N}$$
, $\Phi_{\alpha} = \Phi_{\alpha}(x)$, $x = \frac{1}{2} (q + q^{-1})$

• Polynomials in x with integer coefficients in a suitable normalisation.

In the present case

$$egin{array}{lll} \left\{ egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight.$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

Components:
$$\Phi = \sum_{\alpha} \Phi_{\alpha} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N}$$
, $\Phi_{\alpha} = \Phi_{\alpha}(x)$, $x = \frac{1}{2} (q + q^{-1})$

- Polynomials in x with integer coefficients in a suitable normalisation.
- Some coincide with generating functions for weighted enumeration of *alternating sign matrices*.

In the present case

$$egin{array}{lll} \left\{ egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight.$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

Components:
$$\Phi = \sum_{\alpha} \Phi_{\alpha} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N}$$
, $\Phi_{\alpha} = \Phi_{\alpha}(x)$, $x = \frac{1}{2} (q + q^{-1})$

- Polynomials in x with integer coefficients in a suitable normalisation.
- Some coincide with generating functions for weighted enumeration of *alternating sign matrices*.

In this talk: square norm $||\Phi||^2 = \sum_{lpha} \Phi_{lpha}^2$

In the present case

$$egin{array}{lll} \left\{ egin{array}{lll} \mathfrak{q} e_{\downarrow} &= rac{1}{2}(q+q^{-1})(e_0\otimes e_{\downarrow}-e_{\downarrow}\otimes e_0) \ \mathfrak{q} e_0 &= e_{\uparrow}\otimes e_{\downarrow}-e_{\downarrow}\otimes e_{\uparrow} \ \mathfrak{q} e_{\uparrow} &= rac{1}{2}(q+q^{-1})(e_{\uparrow}\otimes e_0-e_0\otimes e_{\uparrow}) \end{array}
ight.$$

For the twists Ω_{\pm} the FZ-Hamiltonian has an exact zero-energy ground state $H\Phi = 0$ for every N in the subspaces where $S \equiv (-1)^{N+1}$ at any value of the anisotropy parameter q.

Supersymmetry singlet: $\mathfrak{Q}\Phi = 0$, $\mathfrak{Q}^{\dagger}\Phi = 0$, $\Phi \in V_N$.

Components:
$$\Phi = \sum_{\alpha} \Phi_{\alpha} e_{\alpha_1} \otimes \cdots \otimes e_{\alpha_N}$$
, $\Phi_{\alpha} = \Phi_{\alpha}(x)$, $x = \frac{1}{2} (q + q^{-1})$

- Polynomials in x with integer coefficients in a suitable normalisation.
- Some coincide with generating functions for weighted enumeration of *alternating sign matrices*.

In this talk: square norm $||\Phi||^2 = \sum_{lpha} \Phi_{lpha}^2$

Diagonal twist and weighted enumeration of ASMs

Exact determination of eigenvector for small N:

$$||\Phi||^2 = A_N \left(t = (q + q^{-1})^2\right)$$

with the generating function

$$A_N(t) = \sum_{N imes N ext{ ASMs}} t^k$$

k : number of minus signs in given ASM

Diagonal twist and weighted enumeration of ASMs

Exact determination of eigenvector for small N:

$$||\Phi||^2 = A_N \left(t = (q + q^{-1})^2\right)$$

with the generating function

$$A_N(t) = \sum_{N \times N \text{ ASMs}} t^k$$

k : number of minus signs in given ASM

Case of 3×3 alternating sign matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Diagonal twist and weighted enumeration of ASMs

Exact determination of eigenvector for small N:

$$||\Phi||^2 = A_N (t = (q + q^{-1})^2)$$

with the generating function

$$A_N(t) = \sum_{N \times N \text{ ASMs}} t^k$$

k : number of minus signs in given ASM

Case of 3×3 alternating sign matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Exact formula for $A_N(t)$ at any N known.

Non-diagonal twist: another symmetry class

Exact determination of eigenvector for small N:

$$||\Phi||^2 = rac{A_{2N}^{\mathsf{HT}}(t)}{A_N(t)}, \quad t = (q+q^{-1})^2$$

with the generating function

$$A_{2N}^{\rm HT}(t) = \sum_{2N \times 2N \, {\rm HTASMs}} t^k$$

k: half the number of minus signs in given HTASM

Non-diagonal twist: another symmetry class

Exact determination of eigenvector for small N:

$$||\Phi||^2 = rac{A_{2N}^{\mathsf{HT}}(t)}{A_N(t)}, \quad t = (q+q^{-1})^2$$

with the generating function

$$A_{2N}^{\mathsf{HT}}(t) = \sum_{2N \times 2N \,\mathsf{HTASMs}} t^k$$

k: half the number of minus signs in given HTASM

HTASM = Half-Turn symmetric Alternating Sign Matrix

$$\left(\begin{array}{ccccccccc} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

For N = 3: $A_{2N}^{HT}(t) = (6+t)(8+10t+2t^2)$

Non-diagonal twist: another symmetry class

Exact determination of eigenvector for small N:

$$||\Phi||^2 = rac{A_{2N}^{\mathsf{HT}}(t)}{A_N(t)}, \quad t = (q+q^{-1})^2$$

with the generating function

$$A_{2N}^{\mathsf{HT}}(t) = \sum_{2N \times 2N \,\mathsf{HTASMs}} t^k$$

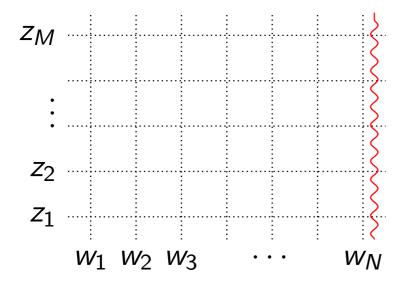
k: half the number of minus signs in given HTASM

HTASM = Half-Turn symmetric Alternating Sign Matrix

$$\left(\begin{array}{cccccccc} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right)$$

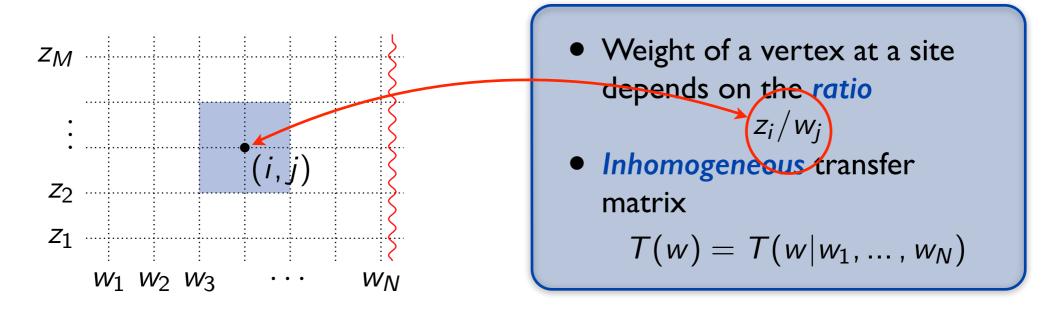
For N = 3:
$$A_{2N}^{HT}(t) = (6+t)(8+10t+2t^2)$$

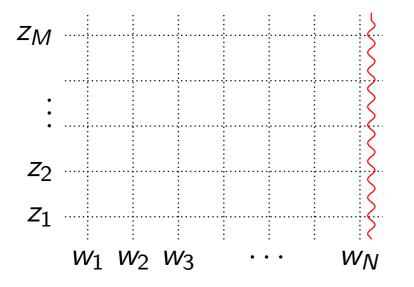
Exact formula for $A_{2N}^{HT}(t)$ at any N known.



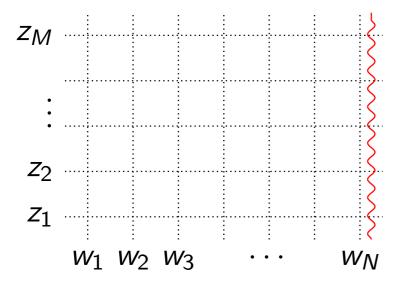
Weight of a vertex at a site depends on the *ratio* z_i/w_j
 Inhomogeneous transfer matrix

$$T(w) = T(w|w_1, \ldots, w_N)$$





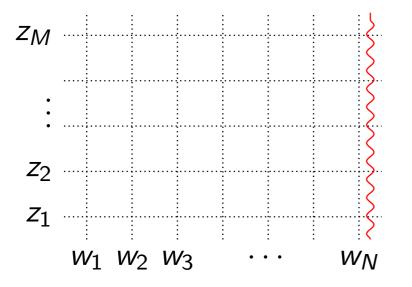
- Weight of a vertex at a site depends on the ratio z_i/w_j
 Inhomogeneous transfer matrix T(w) = T(w|w₁,...,w_N)
- Supersymmetry disappears (broken translation invariance).



Weight of a vertex at a site depends on the *ratio* z_i/w_j
 Inhomogeneous transfer matrix

$$T(w) = T(w|w_1, \ldots, w_N)$$

- Supersymmetry disappears (broken translation invariance).
- The transfer matrix appears to have still a remarkable eigenvector.



- Weight of a vertex at a site depends on the ratio z_i/w_i
- Inhomogeneous transfer matrix

$$T(w) = T(w|w_1, \ldots, w_N)$$

- Supersymmetry disappears (broken translation invariance).
- The transfer matrix appears to have still a remarkable eigenvector.

Conjecture I: For the twists Ω_{\pm} the inhomogeneous transfer matrix for N sites and any q has the simple eigenvalue

$$\Lambda = \pm \prod_{j=1}^{N} \left[\frac{q^{-1} w_j}{w} \right] \left[\frac{q^2 w_j}{w} \right]$$



 Weight of a vertex at a site depends on the ratio z_i/w_j
 Inhomogeneous transfer matrix

$$T(w) = T(w|w_1, \ldots, w_N)$$

- Supersymmetry disappears (broken translation invariance).
- The transfer matrix appears to have still a remarkable eigenvector.

Conjecture I: For the twists Ω_{\pm} the inhomogeneous transfer matrix for N sites and any q has the simple eigenvalue

$$\Lambda = \pm \prod_{j=1}^{N} \left[\frac{q^{-1} w_j}{w} \right] \left[\frac{q^2 w_j}{w} \right]$$

Conjecture 2: In *minimal polynomial normalisation* the corresponding eigenvector is a homogeneous polynomial of degree $d_N = N(N-1)$

$$\Phi(\lambda w_1, \ldots, \lambda w_N) = \lambda^{d_N} \Phi(w_1, \ldots, w_N)$$

Quadratic sum rule for the diagonal twist

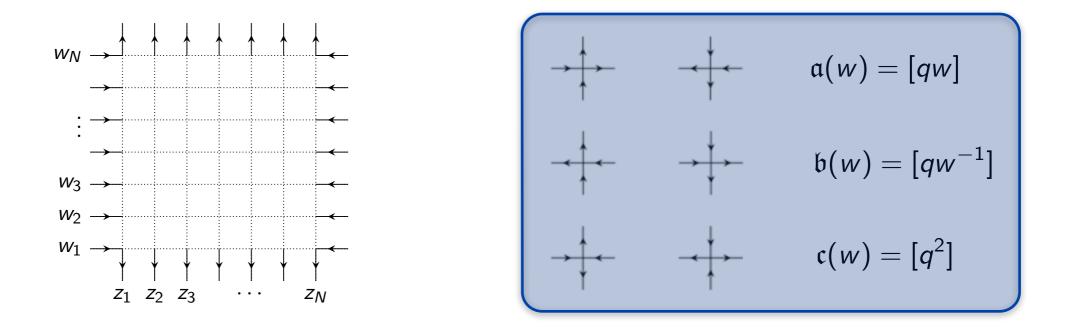
For the diagonal twist we have the quadratic sum rule $\sum_{\alpha} \Phi_{\alpha}(w_1^{-1}, \dots, w_N^{-1}) \Phi_{\alpha}(w_1, \dots, w_N) = Z_N^{\text{IK}}(w_1, \dots, w_N; w_1, \dots, w_N)$

With the partition function of the 6-vertex model on an N x N square with domain-wall boundary conditions

Quadratic sum rule for the diagonal twist

For the diagonal twist we have the quadratic sum rule $\sum_{\alpha} \Phi_{\alpha}(w_1^{-1}, \dots, w_N^{-1}) \Phi_{\alpha}(w_1, \dots, w_N) = Z_N^{\text{IK}}(w_1, \dots, w_N; w_1, \dots, w_N)$

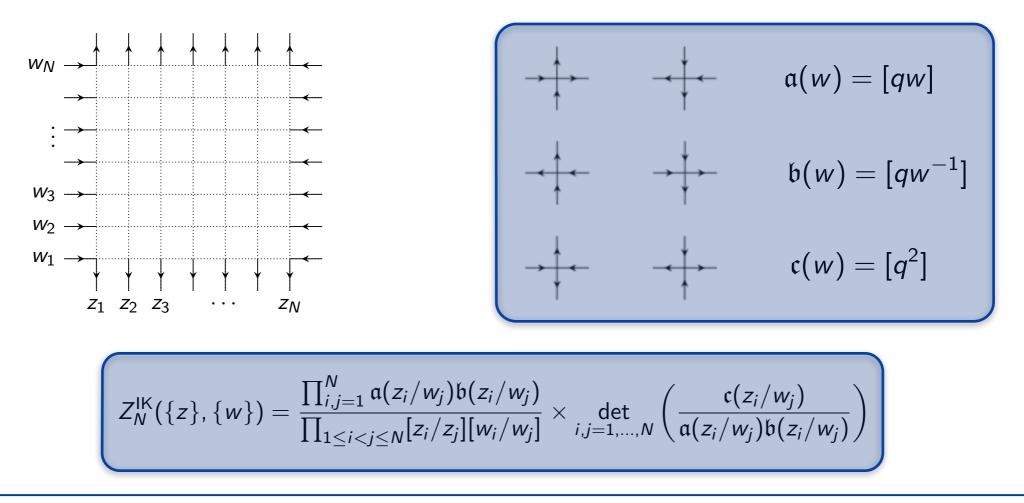
With the partition function of the 6-vertex model on an N x N square with domain-wall boundary conditions



Quadratic sum rule for the diagonal twist

For the diagonal twist we have the quadratic sum rule $\sum_{\alpha} \Phi_{\alpha}(w_1^{-1}, \dots, w_N^{-1}) \Phi_{\alpha}(w_1, \dots, w_N) = Z_N^{IK}(w_1, \dots, w_N; w_1, \dots, w_N)$

With the partition function of the 6-vertex model on an N x N square with domain-wall boundary conditions



Christian Hagendorf

Cardiff 2013

Conjecture for the spin-reversal twist

For the spin-reversal twist the we have the quadratic sum rule

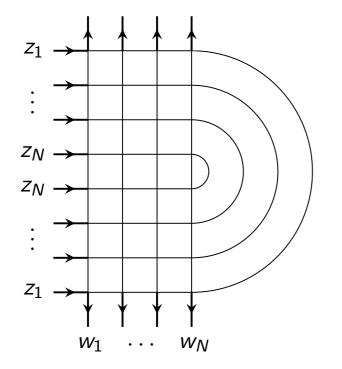
$$\sum_{\alpha} \Phi_{\alpha}(w_{1}^{-1}, \dots, w_{N}^{-1}) \Phi_{\alpha}(w_{1}, \dots, w_{N}) = \frac{Z_{N}^{\mathrm{HT}}(w_{1}, \dots, w_{N}; w_{1}, \dots, w_{N})}{Z_{N}^{\mathrm{IK}}(w_{1}, \dots, w_{N}; w_{1}, \dots, w_{N})}$$

Conjecture for the spin-reversal twist

For the spin-reversal twist the we have the quadratic sum rule

$$\sum_{\alpha} \Phi_{\alpha}(w_{1}^{-1}, \dots, w_{N}^{-1}) \Phi_{\alpha}(w_{1}, \dots, w_{N}) = \frac{Z_{N}^{\text{HT}}(w_{1}, \dots, w_{N}; w_{1}, \dots, w_{N})}{Z_{N}^{\text{IK}}(w_{1}, \dots, w_{N}; w_{1}, \dots, w_{N})}$$

Partition function of the six-vertex model with half-turn boundary conditions



Partition function ratio (Kuperberg)

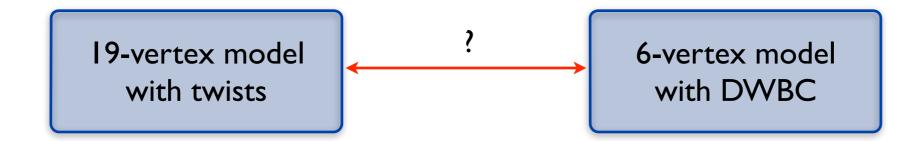
$$\frac{Z_N^{\text{HT}}(\{z\}, \{w\})}{Z_N^{\text{IK}}(\{z\}, \{w\})} = \frac{\prod_{i,j=1}^N \mathfrak{a}(z_i/w_j)\mathfrak{b}(z_i/w_j)}{\prod_{i,j=1}^N [z_i/z_j][w_i/w_j]} \det_{i,j=1,...,N} M_{ij}^{\text{HT}}$$

$$M_{ij}^{\text{HT}} = \frac{1}{\mathfrak{a}(z_i/w_j)} + \frac{1}{\mathfrak{b}(z_i/w_j)}$$

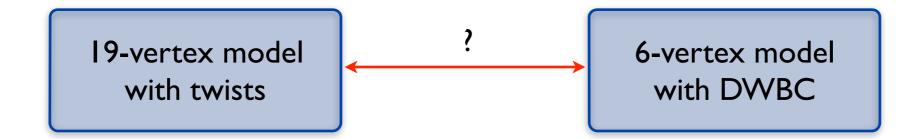
• Dynamical supersymmetry in 19-vertex model (with twists).

- Dynamical supersymmetry in 19-vertex model (with twists).
- Ground states and weighted enumeration of alternating sign matrices.

- Dynamical supersymmetry in 19-vertex model (with twists).
- Ground states and weighted enumeration of alternating sign matrices.
- Inhomogeneous models:



- Dynamical supersymmetry in 19-vertex model (with twists).
- Ground states and weighted enumeration of alternating sign matrices.
- Inhomogeneous models:



• Elliptic extension: 41-vertex model