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Attempt to find a generalization of

the Cantini-Sportiello Theorem alias

Razumov-Stroganov conjecture

and similar counts.

1



multiplicity 2 8 4
weight. 7 3 1

total: 42

The weights for size L = 2n correspond to the number of FLP

patterns on a n× n grid with the same matching.

The well-known sequence 1, 2, 7, 42, 429, 7436, . . .

mult. 2 8 8 8 16 8 4 8 8
wgt. 588 84 216 29 20 7 72 29 1

total: 5544

In this case the weights correspond to the number of half-turn

symmetric FPL patterns on a L× L grid,

i.e. the sequence 1, 2, 3, 10, 25, 140, 588, 5544, 39204, . . .
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On the cylinder we allow not only for

the configurations:

but also for the following
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Assume the weights solve the YB-eq.

And the eigenvalue of the transfer matrix should be

purely exponential in the system size.

Four cases known:

loop weight universality class
1 percolation
0 Self-avoiding-walk
0 Interacting-SAW
0 θ-SAW

We will focus on the

percolation case first.
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wgt. 275 171 104 148 127 94 28 33 76 16

The sum of all weights is 2L−1× the weight of the empty element.

L weight of empty element
1 1
2 2
3 9
4 32
5 275
6 5760
7 98441
8 4128768
9 425662371

10 35997491200

Do these numbers also have

a combinatorial meaning?

Can we find an expression

for them?
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When we make the

model inhomogeneous

we can make explicit

use of the YBeq.
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To make connection

with yesterdays lec-

tures, the parameter

lines are represented

by paths of rhombi

with parallel sides.

In fact the orientation

of the parallel sides

represents the value of

the parameter.
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Suppose a cylinder is tiled

up to some border.

Then the weights of the

loop configurations in-

duce a probability distri-

bution Ψ for the (partial)

matching of the border

edges.

From the YBeq it follows

that Ψ does not depend

on the specific tiling, only

on the geometric shape

of the border, i.e. the se-

quence of oriented edges.
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Adding one rhombus to

the tiled area changes

the shape of the border

and thus the correspond-

ing Ψ.

Knowing the weights of

the rhombus, we know

exactly how Ψ changes:

Ri
α,β(ui, ui+1) Ψβ(. . . , ui, ui+1, . . .) = W (ui, ui+1) Ψα(. . . , ui+1, ui, . . .)

R is the action of the added rhombus on the link pattern,

W is a normalization.
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Ri
α,β(ui, ui+1) Ψβ(. . . , ui, ui+1, . . .) = W (ui, ui+1) Ψα(. . . , ui+1, ui, . . .)

Consider the case that in the link pattern α, the positions i and

i+1 are both occupied, and not connected.

Then there is only the right-most diagram in R can contribute.

Therefore for this link pattern the equation reads:

R (ui, ui+1) Ψα(. . . , ui, ui+1, . . .) = W (ui, ui+1) Ψα(. . . , ui+1, ui, . . .)

This results in:

(uiq − ui+1q
−1) Ψα(ui, ui+1) = (ui+1q − uiq

−1) Ψα(ui+1, ui)

with q3 = −1.
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For two occupied consecutive edges, not mutually connected, the

function Ψ contains the factor (ui+1 q − ui q
−1) and is otherwise

symmetric.

By induction: for a sequence of occupied consecutive edges n . . .m,

not mutually connected, the Ψ contains the factor

m
∏

i=n

m
∏

j=i+1

(q uj − q−1 ui)

and is otherwise symmetric.

11



For the most nested element of size L = 2n we thus have the

factor
n
∏

i=1

n
∏

j=i+1

(q uj − q−1 ui)

We take this for the complete expression.

Can we use this to obtain the other elements?
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For the most nested element of size L = 2n we thus have the

factor
n
∏

i=1

n
∏

j=i+1

(q uj − q−1 ui)

We take this for the complete expression.

Not directly.

←

In this equations there are two new elements.

13



But the R operator has a pleasant property:

When the corresponding rhombus has an angle of π/3, the weights

are the same, except the last one which vanishes:

The rhombus can be seen as the product of two triangles.

When two consecutive parameters of the border of a tiled area are

related as uq, u/q, we may presume this rhombus in between, and

reduce the border by one edge. Consequently:

ΨL(. . . , u q, u/q, . . .) = FL ΨL−1(. . . , u, . . .)

for some FL, and with the link pattern adjusted according to above

triangles.
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In order to separate the two triangles we need a variation of the

Yang-Baxter equation:

which indeed is satisfied by the weights.

From its shape in terms of vertices, we call it the Yen-Baxter

equation.
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Using this recursion we can obtain all elements of Ψ from the

ansatz for the most nested one.

The lower branch gives the factor FL, and the upper branch gives

a new element.

This scheme recursively produces all elements from the most nested

ones.
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The sum of all elements and the empty element are symmetric

functions of the parameters. And they also satisfy the recursion

in size.

They could be recognized as:

Ψs,L = det
0≤i,j<L

E3i−2j

Here En is the elementary symmetric function of degree n

En =
∑

k1<k2<···<kn≤L

n
∏

i=1

uki

with the property

En(. . . , u q, u/q, . . .) = En(. . . , u . . .) + u En−1(. . . , u . . .),

which is not difficult to prove.
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In order to see a connection to combinatorics we take the homo-

geneous case, say all uj = 1.

ΨE,L = det
0≤i,j<L

(

L
3i− 2j

)

With acknowledgment to Mireille

Bousquet Mélou, this can be seen

as a Gessel-Viennot determinant

for lattice paths over a diagonal

strip of the square lattice, be-

tween arrays of starting and end-

ing points spaced by 2 and 3

unites respectively.
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It may be noted that the corresponding expression for the TL case

is:

det
1≤i,j≤L/2

(

L
L− 3i+ j

)

det
1≤i,j≤L/2

(

L
L+1− 3i+ j

)

Here we have a product

of two similar determinants.

Again lattice paths acros a

diagonal strip.

Now the spacing of the ter-

minals is 1 and 3 units re-

spectively.
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Other boundary conditions

With open or reflecting boundaries, the expression for the empty

element is similar.

The open boundaries have an additional degree of freedom, say u0
and uL+1.

The Elementary symmetric functions are now taken of the variables

{. . . , ui, u
−1
i , . . .}.
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For the SAW or interacting SAW a similar calculation can be done.

The empty element for L = 2n is:




∏

1≤i<j≤2n

(ui q + uj)(ui/q + uj)

(ui − uj)



Pf





(u2i − u2j )

(ui q + uj)(ui/q + uj)





1≤i<j≤2n

Here q = eiπ/4 for SAW and q = −eiπ/4 for I-SAW.

Christian Hagendorf noted that this expression appears in Greg

Kuperberg’s Symmetry classes of alternating-sign matrices under

one roof as a factor in the in the x-enumeration of Quarter-Turn

symmetric ASM’s.

It is remarkable that again Alternating Sign matrices show up.
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• The empty (and largest) element of the some cases of the

dilute loop model is calculated.

• In the homogeneous case it can be related to lattice paths

across a diagonal strip.

• Expressions for other boundary conditions are similar.
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