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Brief History of Combinatorial Species of
Structure

1981 André Joyal - original paper on Combinatorial Species of
Structure - giving a rigorous definition for labelled objects

Importance is relating generating function with combinatorial
structures

Bergeron Labelle Leroux Combinatorial Species and Tree-like
Structures - Useful Algebraic Identities (through combinatorics)

Flajolet and Sedgwick - Analytic Combinatorics

Leroux (04) and Faris (08, 10) - links to Statistical Mechanics
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Brief History of Cluster and Virial
Expansions

Generalise Ideal gas Law PV = NkT with power series Expansion
(1901 - Kamerlingh Onnes)

Mayer (40) - understood coefficients as (weighted) 2-connected
graphs (algebraic/complicated method)

Reawakened 60s Groeneveld (62, 63) Lebowitz and Penrose (64)
Ruelle (63, 64, 69) - Kirkwood Salsburg Equations

Gruber Kunz - Polymer Models (71)

Kotecký and Preiss Conditions (86) - developed by Dobrushin (96)
and applied in other ways by Poghosyan Ueltschi (09) - further
developed by Fernández and Procacci (07) - Combinatorial fixed
point equations

Graph Tree Identities/Inequalities - Brydges and Federbush (78)
Battle (84), Battle and Federbush (84)

Combinatorial Species - understand bounds better - quick way to
recognise virial expansion

S. J. Tate Combinatorics and Statistical Mechanics



Overview

1 Combinatorial Species of Structure - an
Overview

2 Mayer’s Theory of Cluster and Virial
Expansions

3 Graphical Involutions



Combinatorial Species of Structure - an Overview
Mayer’s Theory of Cluster and Virial Expansions

Graphical Involutions
Conclusions and Open Questions

Combinatorial Species of Structure -
Definition

Definition

A Combinatorial Species of Structure is a rule F , which

i for every finite set U gives a finite set of structures F [U]

ii for every bijection σ : U → V gives a bijection F [σ] : F [U]→ F [V ]

Furthermore, the bijections F [σ] are required to satisfy the functorial
properties:

i If σ : U → V and τ : V →W , then F [τ ◦ σ] = F [τ ] ◦ F [σ]

ii For the identity bijection: IdU : U → U, F [IdU ] = IdF [U]
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Interpretation of the Definition

The structures have labels (the elements of the set U)

The structures are characterised by sets {1, · · · , n} = [n], so
characterisation by size of set

Our collection of structures must be finite

Relabelling the elements in the structure must behave well
(functorial property)
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Examples of Species of Structure

Example

The important examples I will be using are those of graphs G, connected
graphs C 2-connected graphs B and trees T

Example (An Example of a Graph and a Connected Graph)
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2-connected Graphs

Articulation Points

An articulation point in a connected graph C is a vertex such that its
removal and the removal of all incident edges renders the graph
disconnected.

2-connected Graph

A 2-connected graph is a connected graph with no articulation points.

Blocks in Connected Graphs

A maximal 2-connected subgraph of a connected graph is called a Block.
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Exponential Generating Functions

We use the notation [n] for the set {1, · · · , n}

Exponential Generating Function

The (Exponential) Generating function of a species of structure F is:

F (z) =
∞∑
n=1

fn
zn

n!
(1)

where fn = #F [n]
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Weighted Exponential Generating Functions

We may also add weights to our objects and we have the corresponding
generating function: If each structure s ∈ F [U] is given a weight, w(s),
we have the weighted generating function:

Weighted Generating Function

If fn,w =
∑

s∈F [n]

w(s), then the weighted generating function is:

Fw (z) =
∞∑
n=0

fn,w
zn

n!
(2)
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Operations on Species of Structure

For (formal) power series we have useful operations such as:

Addition (F + G )(z) = F (z) + G (z)

Multiplication (F ? G )(z) = F (z)× G (z)

Substitution (F (G ))(z) = F ◦ G (z)

Differentiation F ′(z)

Euler Derivative (rooting) F •(z) = z d
dz F (z)

There is a corresponding operation on the level of species for each of the
above.
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Classical Gas Background

We have the Canonical Ensemble partition function:

ZN :=
∑

(pi ,qi )∈RN×V N

exp (−βHN({pi , qi}))

β is inverse temperature; HN is the N-particle Hamiltonian; qi are
generalised coordinates and pi are the conjugate momenta.

The Grand Canonical Partition Function:

Ξ(z) :=
∞∑

N=0

zN

N!
ZN

where z = eβµ is the fugacity parameter and µ is the chemical
potential.
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The Cluster Expansion and Virial Expansion

The Grand Canonical Partition function:

Ξ(z) =
∑
N≥0

zN

N!
ZN

In the thermodynamic Limit |Λ| → ∞, we have the pressure
βP = lim

|Λ|→∞
1
|Λ| log Ξ(z)

We assume the existence of such a limit

Expansion for pressure P in terms of fugacity z is the cluster
expansion

We have ρ = z ∂
∂z βP, the density

We may invert this equation and substitute for z to obtain a power
series in ρ

The virial development of the Equation of State is the power series

βP =
∞∑
n=1

cnρ
n called the virial expansion.
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The Classical Gas

With pair potential interactions, we have the Hamiltonian

HN =
N∑
i=1

p2
i

2m +
∑
i<j

ϕ(xi , xj)

If we use Mayer’s trick of setting fi,j = exp(−βϕ(x1, xj))− 1, we may
express the interaction as:∏

i<j

exp(−βϕ(xi , xj)) =
∏
i<j

(fi,j + 1) (3)

=
∑

g∈G[N]

∏
{i,j}∈E(g)

fi,j (4)

It thus makes sense to define our weights on a graph as:

w(g) :=
∏

e∈E(g)

fe (5)

which is edge multiplicative.
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The Classical Gas

If we define w̃(g) =
∫
V

· · ·
∫
V

w(g)dx1 · · · dxN , then we have that the

grand canonical partition function can be identified as the generating
function of weighted graphs in the parameter z .

Grand Canonical Partition Function as Graph Generating
Function

Ξ(z) = Gw̃ (z) (6)
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Obtaining the Pressure

From the relationship G = E(C) and noting that the generating function
for E is the exponential function, we have that:

log Ξ(z) = Cw̃ (z) (7)

We recognise that βP = log Ξ(z), so that:

The Pressure as Connected Graph Generating Function

βP = Cw̃ (z) (8)
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The Density

We use the relationship for the density: ρ = z d
dz βP, to get the

combinatorial interpretation:

Generating Function for Density

ρ(z) = C•w̃ (z) (9)
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The Dissymmetry Theorem

The Dissymmetry Theorem

If we let C represent the species of connected graphs and B the species of
2-connected graphs, then we have the combinatorial relationship:

C + B•(C•) = C• + B(C•) (10)

Furthermore, the combinatorial relationship gives it as a generating
function relationship:

C (z) + B•(C•(z)) = C•(z) + B(C•(z)) (11)

We can also add appropriate weights to get a weighted identity:

Cw (z) + B•w (C•w (z)) = C•w (z) + Bw (C•w (z)) (12)
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The Dissymmetry Theorem and Virial
Expansion

We have the density ρ = C•w (z) and βP = Cw (z) and so, using the
dissymmetry theorem, we get:

βP = ρ+
∞∑
n=2

βn,w̃
n!

ρn −
∞∑
n=2

nβn,w̃
n!

ρn (13)

= ρ−
∞∑
n=2

(n − 1)βn,w̃
n!

ρn (14)

where βn,w̃ =
∑

g∈B[n]

w̃(g)
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The one particle hard-core model

For a one-particle hard-core model, we have that the potential is always
∞, that is the factor e−βϕ(xi ,xj ) = 0 and hence the edge factor is
fi,j = −1 for all i , j . This gives the grand canonical partition function as:

Ξ(z) = 1 + z

giving the pressure as:

βP = log(1 + z) =
∑
n≥1

(−1)n+1zn

n

upon comparison with the combinatorial version (in terms of weighted
connected graphs) we have:

1
2 n(n−1)∑
k=n−1

(−1)kcn,k = (−1)n−1(n − 1)!
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The one-particle hard-core model

Furthermore, we may take the Euler derivative and obtain density:

ρ =
z

1 + z

which may be inverted

z =
ρ

1− ρ
and then substituted to obtain pressure in terms of density:

βP = − log(1− ρ) =
∑
n≥1

ρn

n

Upon comparison with the combinatorial version (in terms of weighted
2-connected graphs) we have:

1
2 n(n−1)∑
k=n

(−1)kbn,k = −(n − 2)!
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Combinatorial Puzzle from Mayer’s Theory
of Cluster Integrals

Theorem (Bernardi 08)

Let cn,k denote the number of connected graphs with n vertices and k
edges, then

1
2 n(n−1)∑
k=n−1

(−1)kcn,k = (−1)n−1(n − 1)!

The cancellations coming from a graph involution Ψ : C → C, fixing only
increasing trees.

Involution involves adding or removing edges to a graph

Created a pairing of graphs G with Ψ(G ) for those which aren’t fixed

May be generalised to the case of the Tonks Gas
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one particle hard core interaction

We have from the virial expansion:

Theorem (T. - In preparation)

If bn,k = number of 2-connected graphs with n vertices and k edges,
then:

1
2 n(n−1)∑
k=n

(−1)kbn,k = −(n − 2)! (15)

The cancellations coming from a graph involution Ψ : B → B fixing only
the 2-connected graphs which are formed from an increasing tree on the
indices [1, n − 1] and has vertex n connected to all the other vertices.

This method can also be generalised to the Tonks Gas
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The Tonks Gas

The appropriate weight for this model is:

w(g) = (−1)e(g)Vol(Πg )

Where Πg is the polytope of the graph g , which is defined by:

Πg := {x[2,n] ∈ Rn−1||xi − xj | ≤ 1∀(i , j) ∈ g x1 = 0}

The identities arising from this are:∑
g∈C[n]

(−1)e(g)Vol(Πg ) = (−1)n−1(n)n−1

∑
g∈B[n]

(−1)e(g)Vol(Πg ) = −n(n − 2)!

The key technique in proving both of these is a splitting of each polytope
into subpolytopes of equal volume. This first appeared in the paper by
Ducharme, Labelle and Leroux, but is attributed to Lass.
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The Tonks Gas

One may consider an integer-valued vector h ∈ Zn−1 and a permutation
σ[2, n]→ [2, n], which indicates order on the indices, giving a unique
n− 1-dimensional simplex with origin at the integer point. These all have
volume 1

(n−1)! and one can determine a relation on the pair (h, σ), which

allows it to be contained in the polytope Πg . The important thing to
realise is that either such a simplex is contained in the polytope or it only
intersects on the boundary.
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The Tonks Gas

The key difference in this case is to consider the vector

h̄ = (hi + σ(i)−1
n )i∈[2,n] providing an order to the edges in the graph

which may be different from the usual lexicographical ordering
provided by the labels on the graph.

For the two-connected version it is necessary to first order the edges
by the differences |h̄i − h̄j |
We achieve a suitable modification of the one particle hard-core
case, which gives a different involution for each pair (h, σ) providing
all cancellations.

In the connected graph case, we end up with an identification with
the rooted connected graphs.

In the two-connected case, we actually obtain more cancellations
and have only fixed graphs for h = (0, · · · , 0,−1, · · · ,−1). We have
n such vectors and have the same interpretation for the fixed graphs.
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Conclusions

The Main Conclusions are:

We have the combinatorial identities which provide us with a simple
way of recognising the virial coefficients

The virial expansion is understood in a broader context from a
combinatorial viewpoint

Statistical Mechanics provides motivation for combinatorial identities

Langrange Inversion and the Dissymmetry Theorem run in parallel to
provide in the former case a method of computing coefficients
exactly and in the latter case an interpretation of the coefficients in
terms of combinatorial structures

There is an interpretation of the combinatorial identities provided by
simple models in statistical mechanics
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Open Questions

Other physical models/problems to apply combinatorial species of
structure - renormalisation in QFT?

Can the cancellations be understood in a larger framework/context?

How can we use this knowledge and understanding of combinatorics
to make effective cancellations in inequalities for our expansions?

What are the general properties of convergence of functions related
by Lagrange Inversion?
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